\[\Phi_{x\beta}(t, \tau) = S \int_{-\infty}^{\infty} h(t - \gamma) h_{\beta}(t + \tau - \gamma) W(\gamma) d\gamma. \]

\[(S(t)S(t + \tau) = S^2(t) \sigma(t). \]

\[W(\gamma) = \begin{cases} 0 & -\infty < \gamma < 0, \\ \sigma(t) & 0 < \gamma < 1, \\ 0 & \text{elsewhere}. \end{cases} \]

\[W(\gamma) = \begin{cases} 0 & -\infty < \gamma < 0, \\ \gamma & 0 < \gamma < 1, \\ 0 & \text{elsewhere}. \end{cases} \]

The diagram on the left shows the phase space of a system with two variables, while the diagram on the right depicts a similar phase space with a different set of variables.
The function $W(t)$ is defined as follows:

$$W(t) = \begin{cases} \gamma & -\infty < t < T, \\ 0 & \text{elsewhere.} \end{cases}$$

Graphs of $W(t)$ and $\Phi_y(l, \tau)$ are shown in the figure.
The text in the image is not legible due to the quality of the image. It appears to be a scientific or technical document, possibly related to physics or mathematics, given the presence of equations and diagrams. However, the content cannot be accurately transcribed without clearer visibility of the text.
\(\theta = \frac{\tau}{2} \) \(\div \) ms

\(\mathbb{R} = 52 \text{m} \) due to the integration of the computer system at the beginning. The integration of the computer system is an important factor in the integration of computer systems. The details of the computer systems are shown in Table 1. The integration of computer systems is an important factor in the computer systems. The details of the computer systems are shown in Table 1.