Fig. 1. Details of the incoherent line source used in model experiments.
Fig. 2. Directional characteristics in a plane normal to the longitudinal axis of the line source (measured at a distance 1 m from the line source. One-third octave band).

Fig. 3. Frequency characteristics of noise radiated from the line source (measured at a distance 1 m from the line source. One-third octave band).
Fig. 4. Sound pressure level as a function of distance from the line source.
Fig. 5. Experimental set-up.

Fig. 6. Relative sound pressure level as a function of distance from each point source (2000 Hz one-third octave band noise).
Fig. 7. Positions of the source and the receiving point for the measurement of Fig. 6.

The positions of the source and receiving point are shown in Fig. 7. The source is located at point A, and the receiving point is located at point B. The acoustic barrier is positioned between the source and the receiving point.

In the context of the experiment, the positions of the source and receiving point are critical for accurate sound measurements. The source, represented by the loudspeaker unit, emits sound waves that are measured at the receiving point. The acoustic barrier is used to minimize external noise, ensuring that the measurements are accurate. The diagram illustrates the setup and the distances involved in the measurement process.
Fig. 8. Relative sound pressure level in shadow zone of the barrie.
□: Experimental values measured with the incoherent line source; □: Calculated values for any array of point sources.
Fig. 9. Sound attenuation by an acoustic barrier versus Fresnel number N for an incoherent line source.

- Our experimental results; \longrightarrow: Calculated by Kurze and Anderson.
Fig. 10. Comparison of different results for sound attenuation by acoustic barrier: (1) Maekawa’s result (for a point source); (2) Kurze and Anderson’s result (calculated for anline source); (3) our experimental results.
Những công trình về ... http://thethongduyenchinh.com

Để đảm bảo...